
N90-27287

KIPSE1 - A KNOWLEDGE-BASED INTERACTIVE PROBLEM SOLVING
ENVIRONMENT FOR DATA ESTIMATION AND PATTERN

CLASSIFICATION

Chia Yung Han*, Liqun Wan +, William G. Wee +

*Department of Computer Science

+Department of Electrical and Computer Engineering
University of Cincinnati
Cincinnati, Ohio 45221

ABSTRACT

A knowledge-based interactive problem solving environment called KIPSE1 is
presented in this paper. The KIPSE1 is a system built on a commercial expert system shell,
the KEE system. This environment gives user capability to carry out exploratory data
analysis and pattern classification tasks. A good solution often consists of a sequence of
steps with a set of methods used at each step. In KIPSE1, solution is represented in the
form of a decision tree and each node of the solution nee represents a partial solution to the

problem. Many methodologies are provided at each node to the user such that the user can
interactively select the method and data sets to test and subsequently examine the results.
Else, users are allowed to make decisions at various stages of problem solving to subdivide

the problem into smaller subproblems such that a large problem can be handled and a better
solution can be found.

I. INTRODUCTION

One of the major goals in computer-based problem solving is to provide computer
users more flexibility and guidance in using the available computing resources. To facilitate
user select proper methodologies and decide what computing tools to use in solving
problems of a particular problem domain, specialized knowledge of expertise needs to be
incorporated. A current research thrust in achieving this goal is to build a knowledge-based

problem solving system where numeric processing is integrated with symbolic processing
(4, 7, 10).

A problem solving environment (PSE), as broadly stated in (3), is an integrated
multitasking system that supports and assists user in the solution of a given class of
problems. Normally, within a more established discipline area or domain, collections of
numerical programs in various forms and capabilities are available for use. These programs
may be in the form of callable subroutines that can be accessed within an application
program or through the use of specialized high level languages. There are currently many
examples of PSE available in some problem areas. For instance, in the area of statistical
computing, there exist packages such as SAS, BMDP, and others. In the arena of
CAD/CAM where numeric computing routines for data display and geometric information

manipulation are incorporated, there exist systems such as AutoCAD, GeoMod, just to
name a few. Although these PSEs employ well-proven techniques of the problem area and
may relieve the burden of code writing from the user, knowledge about the numeric
algorithms and techniques used in these programs and facilities that allow a user to
interactively define the process and examine the various results are not readily available to
the user.

To augment PSE with capabilities to incorporate knowledge to manage symbolic
manipulations, numerical routines, and problem solving strategies AI techniques are used.

PRECEDING PAGE BLANK NOT FILMED

103



AI techniques,specifically,methodologiesfrom the expertsystemstechnologyenhance
greatly the capability of PSE which include strategiesfor finding nondeterministic
solutions, techniquesfor constraint propagationand search,and various knowledge
representationschemessuchassemanticnetsandframes.

Many featuresareneededin a knowledge-basedPSE.Basically,it shouldcontain
thefollowing components:afriendly userinterface,abankof numericprograms,akernel
for systemcontrolwith a varietyof datastructuresfor handlingdifferentdatatypes,output
displayfor both textandgraphics,preprocessorandpostprocessormodulesfor interfacing
thevariousnumericprograms,andaknowledgebase.In SectionII, aPSEarchitecturefor
dataestimationand patternclassificationis presentedandits componentsexplained.In
SectionIII, the detailed implementationissuesof our systemKIPSE1 are discussed.
SectionIV discussessomefeaturesof theKIPSE1 system.Concludingremarkswill be
givenin SectionV.

II. A PSE ARCHITECTURE FOR DATA ESTIMATION AND PATTERN
CLASSIFICATION

Problem solving process is a highly intelligent behavior. It is domain dependent and
user involvement is extensive. For any new problems, the questions the user wants to

answer are usually non-routine and many time very difficult (2). To model the general
problem solving strategy and to build a system for all problem areas is almost impossible or
at least very inefficient. Therefore, only PSE concentrated on a specific application domain
is built in practice. As an environment the user involx_ement issue requires that it be
convenience of use with effective user interfaces.

A PSE for data estimation and pattern classification tasks that are common in many
areas of application has been proposed by the authors. A data estimation problem is given
below to illustrate this. In data estimation, one is often asked to find a mathematical model

to best explain the given data set. Many statistical packages, which may reside in many
different computer systems, can be used for this purpose. For example, the multiple linear
regression P 1R routine in the BMDP statistical package and the regression REG routine in
the SAS packages. After choosing the package, user still needs to have some statistical

knowledge about each model, its assumptions, requirements, and so on, in order to pick
the right model. User also needs to know the specific language for each package in order to
use these routines. Many pages of numerical output are generated from these routines and a
casual user usually needs expert assistance for a meaningful interpretation of the results.

The process may repeat many times before an acceptable solution is determined. A system
which integrates all these in one environment will greatly increase the productivity of the
user in solving the problem. The PSE architecture for data estimation and pattern
classification is shown in Figure 1.

The entire problem solving process can be divided in the following steps: problem
formation, process generation, process setup, and postprocess. At the first stage, the
problem formation includes problem parameter definition, data format conversion, and

system initialization. In the process generation step, the strategy for solving the problem is
formulated by the user based on the domain knowledge and previous results. Once a
process is defined to perform certain task, the system will automatically set up the interface
to the application program and initialize the computing processes. During the postprocess
stage, useful information from the computing routines are extracted, converted into proper
format and stored to the database for later retrieval. Output display routines are invoked to
display the results both in text and graphical forms. A rule-based result interpreter is used

to interpret the results. User examines the results and makes decision to either redesign the
process or stop.

104



Data Flow

Control Flow
I omputing

Resource

Knowledge Base

roblem Process Process

ormation Generation Setup

User Interface Results Plotting

Database Routines

Figure 1. An Architecture for PSE for Data Estimation and Pattern Classification

IH. SYSTEM IMPLEMENTATION

It has been determined from our past experiences in designing various expert

systems that higher end expert system shells can provide the necessary tools for the
implementation of the KIPSE 1. The system requirements essentially consist of 1)powerful
data structure to represent complex process, 2)flexible knowledge representational schemes
to represent domain knowledge, 3)user interface with graphical capability, and 4)interface
to other computer systems.

The KIPSE1 system is built on top of the Intellicorp's Knowledge Engineering
Environment, the KEE system. Frame-based structure is used to represent the attributes of
individual process. This frame-based structure is an object-oriented system where objects
are structured as units with slots. Attributes are specified in slots. Slots may contain

descriptive, behavioral, or procedural information, and relations are expressed using slot
values (5). The KIPSE1 is organized as a hierarchical tree structure where each individual

process is incorporated as a node within the structure. As an example, the structure of
pattern recognition (PR) process is shown in Figure 2. At each node the control of the
problem solving is coded in one of attached procedures associated with that node. Figure 3
shows an example of a procedural method written in Lisp. This procedure is the control

procedure for the classifier design process.

The objective of pattern classification problem is to determine to which class a given
data sample belongs. The process of designing a pattern recognition system can be divided
as data gathering, normalization, data structure analysis, classifier design, and testing (error
estimation) (11). The main purpose of the data structure analysis is to explore the data set
structure in order to design the classifier in a later stage. The operations in this stage include
feature extraction, clustering, statistical tests, and modeling. The classifier design is also

105



called training or learning stage in which data samples are collected from various classes

and the class boundaries are determined. There are several common classifier design
methods used in this stage. They include linear classifier, quadratic classifier, piecewise
linear classifier, and nonparametric classifier.

Pattern. Recognition

Data Gathering

Problem. Formation _

Normalization

I/Data'Structure'Analysis __2_cal.Tests

/Linear. Classifier

_%Classifier. Design_Quadratic.Classifier

N _Piecewise'Linear'classifier

_Nonparametric.Classifier

Testing

Figure 2. A Structure for the Pattern Recognition Process

Our philosophy is to provide as many methods as possible to the user to try out at
each node. Just as no general data structure is suitable for all problems, there is no general
method applicable for all the pattern recognition problems. The best that one can do is to

provide a good environment with all available methods so the user can pick up fight method
for the problem under consideration based on both the nature of that problem and the user's
previous experience. A user might even try different methods, compare the results, and
select the best one among the various trials. For those users who are not familiar with those

methods provided in the system, heuristic rules are provided to help the user find
appropriate one to use based on the general nature of the problem and usage requirements
and limitations of each method.

The KIPSE1 system is menu-driven. Figure 4 shows the screen menu for the

selection of classifier design methods as an example of a stage of running process. Four
types of classifier methods, which include linear, quadratic, piecewise linear, and
nonparametric classifier are provided to the user. In addition, expert knowledge is available
in the HELP option.

Different types of knowledge are imbedded in the environment. In addition to the

one of selecting a method as mentioned above there is specific knowledge for helping user
to choose right parameters for each selected method, knowledge to help interpret the
results, and knowledge for error handling. These knowledge types are coded explicitly in
the rule form and is structured as shown in Figure 5.

106



0ambda (self node)
(let (process)

(setf process (pop-up-cascading-menu-choose (make.cascading.menu
:POP-UP '(C Linear Classifier" Z, inear.Classifier)

C Quadratic Classifier" 'Quadratic.Classifier)
C Piecewise Linear Classifier" 'Piecewise.Linear.Classifier)
C Nonparametric Classifier" 'Nonparametric.Classifier)

:PARENT *kee-root-window*
:TITLE "CLASSIFIER DESIGN: Choose One of the Following Method")))

; Display the menu on the screen, ask user to choose method
(cond ((not (equal process 'help))(put.value self 'process process))

; Save user selection in slot process
(t (query '(THE PROCESS OF CLASSIFIER.DESIGN IS ?X)

'Classi tier. Design. Help.rule.class)

; Help user find right process using the knowledge provided by the expert
))

(unitmsg (get.value self 'process)'control node)

)
)

Figure 3. Control Procedure for Classifier Design Process

CLASSIFIER DESIGN: Choose One of the Following Method

Linear Classifier

Quadratic Classifier

Piecewise Classifier

Nonparametric Classifier

HELP

Figure 4. A Running Menu

rocess.Generation. Rule.Class

Rule. Class rocess. Setup. Rule. Class

Results. Interpretation. Rule. Class

Postprocess.Rule.ClaSS<Error. Handling. Rule. Clas s

Figure 5. The Structure of the Rule System

Rules are used to represent knowledge. An example of a rule is given here. This is
a result interpretation rule used in the clustering process. The purpose of the clustering
process in pattern classification or recognition is to find a method for combining objects

107



into groups or clusters such that objects in each cluster are similar. Similarity is defined by
a measure of similarity provided by the user. If this measure is set improperly, say, it is too
small, many meaningless small clusters will result. In this case the measure needs to be
adjusted. From the domain expert it has been determined that the total number of clusters in

most cases should be kept under four. A rule that convey this expert knowledge may be
included as shown in Figure 6.

CLUSTERING.RESULTS.INTERPRETATION.RULE.001

(IF (THE RESULTS OF CLUSTERING IS ?X)

(LISP (> ?X 4))

THEN

(THE PERFORMANCE.EVALUATION OF CLUSTERING

Figure 6. An Example of Rule

IS NOT.ACCEPT)

IV. SYSTEM FEATURES

In this section, some of the basic features of the system are discussed. They are
ease to integrate new software, availability of various methodologies, and user involvement
in generating hierarchical decision tree.

An important feature of the system is its extensibility. General procedure is set up to
integrate any software to the system. As explained earlier, a new software is defined as a
new node in the system tree structure. The process of adding a new software is equivalent
to inserting a new node to the proper position of the existing tree structure.

The information associated with each node is categorized into two classes. One is
the global information used in interacting with the system. It includes software location,

description, usage, results, performance evaluation, and the rule class that provides
conditions for accessing the methods. Another category is the local information relating to
actual computing process initialization. It includes preprocess, postprocess, result
interpretation rule class, and error handling rule class. The general node structure is shown
in Figure 7.

As an example, to integrate the method of multiple linear regression, say, the P1R
routine of the BMDP package, which resides in a node called 'ucaicv' on the network, the

following relevant information is stored in the pertinent node of P1R and shown in Figure
8.

It has long been noted in the field of pattern recognition that the key to problem
solving does not rely only on the sophistication of the available algorithms but also lies
heavily on the proper representation of the pattern structure of the data (6). Quite a few

complex problems can be broken down into simpler problems. Each subproblem becomes
easier to be solved. As stated in (1), hierarchical structure from a very important data
representation and decision tree are naturally suited for problem solving with such a data
representation.

In the KIPSE1 system both the problem and its solving process are also represented
in the form of frame of structure. One of the important features of the KIPSE1 is that it
provides a mechanism to allow user to break a problem node down into several subproblem
nodes. These problem nodes can be organized hierarchically by setting up two special slots:

108



parentslotandchildrenslot.Eachproblemnodecapturesthepartialdecisionprocessand
thedecisiontreerepresentstheproblemsolution.

Program Location

Program Description

Functional Description

Help Rule Class

Results

Performance Evaluation

Control Procedure

Preprocess Procedure

Process Setup Rule Class

Postprocess Procedure

Results Interpretation Rule Clas:

Error Handling Rule Class

Figure 7. A General Node Structure

UCAICV

A routine in BMDP statistical package

Multiple Linear Regression

PIR. GENERATION. RULE. CLASS

(results)

(performance evaluation)

PIR. CONTROL

PIR. PREPROCESS

PIR. SETUP .RULE. CLASS

PIR. POSTPROCESS

PIR. RESULTS .INTERPRETATION. RULE. CLASS

PIR. ERROR. HANDLING. RULE. CLASS

Figure 8. An Example of Integrating an External Program to the System

109



Several strategies are incorporated into the system. They include ad hoc strategies
defined by the nature of the problem based on a priori experience, by visualization of input
data set, by performance evaluation, and by exploration and trade-off study.

A decision tree solution to a data estimation problem is shown in Figure 9. The
original set of 91 data points has been partitioned into four subproblem spaces of 22, 20,
24, and 25 data points. Shown along each node are the regression equation associated with
the sample data set, the respective mean squared error, and the decision made to subdivide
the problem space.

I 22

z=12+. 6x+l. 3y

MSE=I. 2

_Z=4+l. 2x+l. 8y

El2 0

Z=8+. 8x+2. ly Z=3+I. 4x+. 9y Z=I+I. 8x+l. 8y

MSE=I. 8 MSE:I. 5 MSE=0.8

Figure 9. An Example of Solving a Data Estimation Problem Using Decision Tree

V. CONCLUDING REMARKS

A knowledge-based interactive problem solving environment for data estimation
and pattern classification has been presented. The entire problem solving process is viewed
as a multi-step decision making process. It is a learning process that at each step some kind
of exploratory actions take place. The KIPSE1 provides this powerful problem solving
capability. It is easy to use, easy to expand, and special knowledge is include to assist the

user throughout the problem solving process. The system has been implemented on top of
a powerful commercial expert system development shell. Its flexible knowledge
representation and useful interface facilities have provided means to organize the numeric

computing tools, to incorporate symbolic knowledge, and thus create a powerful problem
solving environment.

110



VI. REFERECES

[1] Dattatreya, G. R. and Kanal, L. N., "Decision Tree in Pattern Recognition," Progress
in Pattern Recognition 2, Kanal and Rosenfeld, eds, North-Holland, 1985, pp. 189-
239.

[2] Feldman, S., "The How and Which of Problem Solving Environment," Problem

Solving Environment for Scientific Computing, Ford and Chatelin, eds, Elsevier
Science Publishing Co., 1987, pp. 23-32.

[3] Ford, B. and Iles, R. M. J., "The What and Why of Problem Solving Environments
for Scientific Computing," Problem Solving Environment for Scientific Computing,
Ford and Chatelin, Eds, Elsevier Science Publishing Co., 1987, pp.3-22.

[4] Gladd, N. T. and Krall, N. A., "Artificial Intelligence Methods for Facilitating Large-
Scala Numerical Computations," Coupling Symbolic and Numeric Computing in

Knowledge-Based Systems, Kowalik, J. S., editor, North-Hollad, 1987, pp.123-
136.

[5] Intellicorp's KEE version 3.0 manuals, 1986.

[6] Kanal, L. N., "Interactive Pattern Analysis and Classification Systems: A Survey and
Commentary," Proc. IEEE, vol.60, Oct. 1972, pp.1200-1215.

[7] Kitzmiller, C. T., Kowalik, J. S., "Coupling Symbolic and Numeric Computing in

Knowledge-Based Systems," AI Magazine, Summer, 1987, pp.85-90.

[8] Lusk, E. L. and Overbeek, R. A.,"Automated Reasoning and Knowledge Based
Design in the Scientific Programming Environment," Problem Solving Environment
for Scientific Computing, Ford and Chatelin, eds, Elsevier Science Publishing Co.,

1987, pp.83-98.

[9] Machura, M., "Issues in the Design of Problem Solving Environments," Problem
Solving Environment for Scientific Computing, Ford and Chatelin, eds, Elsevier
Science Publishing Co., 1987, pp.263-280.

[10] Tompkins, J. W., "Using an Object-Oriented Environment to Enable Expert System to
Deal with Existing Programs, Coupling Symbolic and Numeric Computing in
Knowledge-Based Systems, Kowalik, J. S., editor, North-Holland, 1987, pp.161-
168.

[11] Young, T. Y. and Fu, K. S., eds., Handbook of Pattern Recognition and Image
Processing, Academic Press, 1986.

iii




